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Abstract

This is one of several articles describing the function-
ality of the global weather prediction model FIM (for
Flow-following, Finite-volume, Icosahedral) developed at
NOAA’s Earth Systems Research Laboratory. Empha-
sis in the present article is on the design of the vertical
coordinate – the “flow-following” aspect of FIM. The coor-
dinate is terrain-following near the ground and isentropic
in the free atmosphere. The spatial transition between
the two coordinates is adaptive and is based on the ALE
(Arbitrary Lagrangian Eulerian) paradigm. The impact of
vertical resolution tradeoffs between the present hybrid
approach and traditional terrain-following coordinates is
demonstrated in a three-part case study.

1. Introduction

The last few decades have seen significant advances in
numerical weather prediction. The skill of today’s NWP
models owes much to improved closure schemes for
physical processes that are too short-lived or too small
in scale to be resolved by a model’s space-time mesh.
Higher numerical accuracy, made possible primarily by
faster computers but to some degree by the invention of
new techniques for solving partial differential equations,
also had a large impact on forecast skill.

Numerical accuracy is typically expressed in terms of
the truncation or discretization error, defined as the ex-
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tent to which the magnitude of individual terms in a differ-
ential equation is misrepresented in a numerical model
due to grid resolution limits. There are at least three
ways to reduce the truncation error: one can (1) refine
the grid, (2) approximate spatial and temporal derivatives
in a more precise way, or (3) optimize the placement of
grid points in the space-time domain.

FIM, the flow-following, finite-volume, icosahedral
NWP model recently developed by NOAA’s Earth Sys-
tems Research Laboratory, takes advantage of recently
developed ideas about grid point placement – the third
alternative just mentioned. Specifically, FIM uses the
icosahedron, a near-spherical body composed of 20
equilateral triangles, as a basis for horizontal grid lay-
out while in the vertical it uses a coordinate with a strong
Lagrangian (hence “flow-following”) flavor. The focus of
the present article is on the vertical coordinate in FIM.

2. History

Physical reasoning suggests that entropy or a variable
related to it, such as buoyancy, is the most appropriate
candidate for a Langrangian vertical coordinate in mod-
eling stratified, quasi-adiabatic flow. The advantages of
analyzing atmospheric motion in the free atmosphere in
an isentropic reference frame have been thoroughly dis-
cussed in the literature starting with Rossby and Collab-
orators (1937), Rossby (1940), and Kleinschmidt (1950).
Those arguments need not be repeated here. Likewise,
the rationale for using isentropic coordinates in NWP
models has been laid out repeatedly [e.g., Eliassen and
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Raustein (1968), Bleck (1974), Hsu and Arakawa (1990),
Benjamin et al. (2004)]. The list of potential advantages
of isentropic modeling compiled by those and other au-
thors is long, and there is not much we can add to it at
this time.

Isentropic NWP models came into being in the 1960s,
but it is fair to say that “pure” isentropic coordinate
models (those that use entropy as vertical coordinate
throughout the model domain) have not withstood the
test of time because of their inherent inability to pro-
vide vertical resolution in unstably stratified air columns.
Complexities associated with coordinate-ground inter-
sections also were, and continue to be, a deterrent to
pure isentropic coordinate modeling.

Early experiments with isentropic models were con-
ducted to simulate baroclinic instability with an eye on
short-range weather prediction. Since modeling of dia-
batic forcing was not essential in that context, the inter-
section of coordinate surfaces with the ground – unavoid-
able in baroclinic flow – was regarded as the main nu-
merical challenge. Eliassen and Raustein (1968), in their
pioneering work on primitive-equation isentropic model-
ing, chose to track coordinate-ground intersections by
solving an advection equation for surface potential tem-
perature θs,

∂θs

∂t
+ vs · ∇θs = 0. (1)

Though justifiable at the time, this strategy created a re-
dundancy problem because isentropic coordinate mod-
els typically contain another equation predicting the loca-
tion of coordinate-ground intersections, namely, the con-
tinuity equation for isentropic layer thickness ∆p,

∂∆p

∂t
+ ∇ · (v∆p) = 0. (2)

To understand why this is so, keep in mind that the line
marking the intersection of an isentrope with the ground
also marks the edge of the region where the thickness
of the coordinate layer beneath the isentrope is zero. In
principle, solving (2) in the vicinity of the intersection line
therefore provides information about which way the line
is moving.

Obtaining accurate solutions of (2) in the transition re-
gion between zero and nonzero ∆p values is numerically
challenging. Since the solution of (1) is subject to numer-
ical errors as well, the two equations do not always agree
on where a coordinate surface intersects the ground at
any given time. The resulting discrepancies act at best

as a source of model noise; at worst, they lead to numer-
ical instability.

The problem just described spawned several attempts
in the 1970s to improve the treatment of coordinate-
ground intersections by inserting a set of terrain-following
coordinate surfaces, commonly referred to as σ surfaces
(Phillips 1957), between the ground and the isentropic
domain (Deaven 1976; Uccellini et al. 1979; Friend et al.
1977; Bleck 1978). In all these schemes, with the ex-
ception of scheme D of Bleck (1978), the two coordi-
nate domains overlap, i.e., coordinate surfaces belong-
ing to one domain intersect those belonging to the other.
This requires interpolation. Scheme D, having no over-
laps, leads to a particularly simple set of model equa-
tions, making it easy to formulate them in rigorously con-
servative form, but it has shortcomings of its own. The
Uccellini et al. (1979) scheme and a variant of Bleck’s
scheme D are in use today in different versions of the
University of Wisconsin global model [Zapotocny et al.
(1994), Schaak et al. (2004)].

The decade of the 1980s saw some progress in
the related field of ocean circulation modeling with an
entropy-related vertical coordinate. Specifically, Bleck
and Boudra (1981) developed a coordinate system which
is mainly isopycnic but allows coordinate layers to turn
into constant-thickness layers beneath the sea surface
to overcome the massless layer problem associated with
modeling baroclinic ocean states. This may have been
the first time that ALE (Arbitrary Lagrangian-Eulerian) co-
ordinates were used in geophysical modeling.

Increasingly skillful schemes for avoiding coordinate-
ground intersections were developed in the 1990s [Bleck
and Benjamin (1993), Konor and Arakawa (1997), Web-
ster et al. (1999)]. These more recent schemes resem-
ble scheme D of Bleck (1978) in the sense that they
avoid overlaps between isentropic and terrain-following
or isobaric subdomains, but they go beyond scheme D
in alleviating, to varying degrees, the abrupt transition
from non-isentropic to isentropic coordinate representa-
tion. Some aspects of these schemes will be discussed
later in greater detail.

A parallel effort to build purely isentropic or isopycnic
models free of the redundancy implied by jointly solving
(2) and (1) was brought to a conclusion [Bleck (1984),
Bleck and Boudra (1986)] with the advent of the Flux
Corrected Transport algorithm (Boris and Book 1973).
This scheme yielded well-behaved solutions of the con-
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tinuity equation in transition zones between zero and
nonzero layer thickness where under- and overshoots
(especially negative ∆p values) are particularly detri-
mental to numerical stability. An alternative approach
to pure isentropic modeling, advocated by Hsu and
Arakawa (1990), is to compute horizontal mass fluxes
using the Takacs (1985) advection scheme. Since this
scheme does not enforce positive definiteness as rig-
orously as does FCT, Hsu and Arakawa (1990) had to
keep a small amount of mass in coordinate layers that in
the aforementioned models are allowed to become truly
massless.

Having assembled a set of numerically resilient tools
for handling the intersection of isentropes with the
ground, the isentropic modeling community turned its
attention to the second problem in isentropic modeling,
i.e., the need to accomodate unstable lapse rates asso-
ciated with diabatic surface forcing. Since both problems
manifest themselves at or near the surface, the reme-
dies developed to address the coordinate-ground inter-
section problem also were useful in alleviating the unsta-
ble lapse rate problem. Models general enough to acco-
modate diabatic surface forcing [Zhu et al. (1992), Bleck
and Benjamin (1993), Zapotocny et al. (1994), Konor and
Arakawa (1997), Schaak et al. (2004)] therefore resem-
ble the ones mentioned earlier in their vertical layout.
The salient aspect of all these approaches is that they
“hybridize” the isentropic coordinate, i.e., strike a com-
promise between Lagrangian and Eulerian vertical grid
representation.

3. Brief review of FIM dynamics

The horizontal aspects of the dynamical core of FIM are
described in detail elsewhere (Lee and MacDonald 2009;
Lee et al. 2009), but a brief review is needed here to
put the ensuing discussion of the vertical coordinate into
context [see also Kasahara (1974) and Bleck (1978) for
derivations of equations in generalized vertical coordi-
nates].

FIM solves a system of layer-integrated, hydrostati-
cally approximated conservation equations for momen-
tum, mass, thermal energy, and gaseous as well as liq-
uid or frozen water content. “Physics” components that
model diabatic forcing of the atmosphere – such as wa-
ter phase changes, radiation, and surface fluxes – were

imported from the Global Forecast System of NOAA’s
Centers for Environmental Prediction. Details about their
implementation will be the topic of a forthcoming paper
on FIM’s performance in general.

In the following, let v be the (Cartesian) horizontal ve-
locity vector taken as vertically constant within a coordi-
nate layer; ∇s the 2-D gradient operator at s = const;
Π = cp(p/p0)

R/cp the Exner function; θ = cpT/Π the
potential temperature; M = gz+Πθ the Montgomery po-
tential; ζ the vorticity (i.e., the vertical or k component of
the velocity curl vector); θ̇ the net diabatic heating; and
F the sum of frictional forces.

The layer-integrated conservation equations, supple-
mented by the hydrostatic equation, are

Momentum conservation:
∂v

∂t
+ (ζ+f)k× v

+
1

∆p

[(

ṡ
∂p

∂s

)

2

(v̂2−v) −

(

ṡ
∂p

∂s

)

1

(v̂1−v)

]

+∇s

(

M +
v

2

2

)

− Π∇sθ = F. (3)

Here, indices 1 and 2 denote the upper and lower inter-
face, respectively, of a coordinate layer, and ∆p = p2−p1.
The vertical advection terms (those involving ṡ) involve
interface velocity values denoted here by v̂. Since v is
discontinuous at interfaces, the definition of v̂ is to some
extent arbitrary and in practice depends on the finite-
difference vertical advection scheme.

Mass conservation:

∂∆p

∂t
+ ∇s · (v∆p) +

(

ṡ
∂p

∂s

)

2

−

(

ṡ
∂p

∂s

)

1

= 0. (4)

Thermal energy conservation:

∂(θ∆p)

∂t
+∇s·(θv∆p)+

(

ṡ
∂p

∂s
θ̂

)

2

−

(

ṡ
∂p

∂s
θ̂

)

1

= θ̇∆p. (5)

As before, the caret in (5) denotes interface values
needed in the vertical transport terms. The method by
which they are constructed (upstream, centered,...) de-
termines properties such as monotonicity and diffusive-
ness of vertical advection in the model.

Equations for other mass field tracers (moisture etc.)
have the same form as (5).

Hydrostatic Equation:

∂M

∂θ
= Π. (6)
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4. The ALE coordinate

FIM belongs to a category of circulation models referred
to as layer models, meaning that vertical spacing of grid
points is allowed to vary in space and time. Since the
prognostic equations resemble the shallow-water equa-
tions – even in the sense that variables carried within
layers are for many intents and purposes treated as ver-
tically constant – layer models are also referred to as
stacked shallow-water models.

The hybrid grid in FIM resembles that of RUC (Ben-
jamin et al. 2004; Bleck and Benjamin 1993), but ver-
tical staggering of variables is different because the
RUC scheme does not rigorously conserve mass field
constituents (referred to here as “tracers”). In RUC, θ

is carried on interfaces as in the Charney-Phillips grid
(Arakawa and Moorthi 1988). This staggering conven-
tion, which is also followed in the Konor and Arakawa
(1997) model, makes restoration of θ to its prescribed
coordinate value (see below) somewhat easier in RUC
than in FIM which uses Lorenz type staggering (Arakawa
and Moorthi 1988). FIM staggering replicates the layer
treatment in the hybrid-isopycnic ocean model HYCOM
(Bleck 2002) where only pressure and geopotential are
carried on interfaces while all other variables, including
tracers and Montgomery potential, are defined in layers.

The vertical coordinate in FIM is designed around
the idea that coordinate layers conform to isentropic lay-
ers except in locations where these intersect the earth’s
surface. There, layers are locally redefined as terrain-
following (σ coordinate) layers. An individual coordinate
layer can be isentropic in one geographic region and
terrain-following in another.

The hybridization concept employed here and in RUC
differs from hybrid schemes developed elsewhere (Bleck
1978; Konor and Arakawa 1997; Pierce et al. 1991; Web-
ster et al. 1999; Zapotocny et al. 1991, 1994) in that
it relies on locally mandated adjustment of vertical grid
spacing rather than on a fixed formula typically consist-
ing of a weighted average of two or more traditional co-
ordinate choices. The vertical coordinate in FIM is best
described as Arbitrary Lagrangian-Eulerian (Hirt et al.
1974), but we have added a mechanism for keeping co-
ordinate layers aligned with their designated target isen-
tropes over time when- and wherever this does not con-
flict with minimum layer thickness constraints. The orig-
inal ALE scheme (loc.cit.) only concerned itself with the

maintenance of nonzero grid spacing in Lagrangian co-
ordinate simulations. Coordinate “maintenance” in the
sense of keeping coordinate surfaces aligned with iso-
surfaces of some physical property is essential if an ALE
circulation model is to be used in long-range weather or
climate simulation.

While the flexibility of coordinate placement in ALE-
type schemes is disconcerting to some users because
grid point location in model space cannot be expressed
in terms of a simple analytic formula, the ALE scheme
excels in maximizing the size of the purely isentropic
subdomain. This follows from the scheme’s ability to set
the height where the σ coordinate gives way to the θ co-
ordinate in each geographic location separately, i.e., un-
encumbered by global considerations. Thus, while the
lowest purely isentropic coordinate surface in schemes
D of Bleck (1978) and Zapotocny et al. (1994) in a global
model must be selected with the highest summertime
temperature over the Tibetan Plateau in mind, the ALE
approach contains no such restrictions. Furthermore,
the problem of coordinate surface intertwining due to
inappropriately chosen coordinate blending coefficients
(Zhu et al. 1992) does not arise in an ALE scheme.

FIM manages the vertical grid structure as follows. If
a given layer is “on target” (meaning that θ matches the
target potential temperature assigned to this layer) and
if, in addition, the 2-D shallow-water continuity equation
(eq. (4) without the ṡ terms)

∂∆p

∂t
+ ∇ · (v∆p) = 0 (7)

yields a layer thickness ∆p that does not fall below a pre-
determined minimum ∆pmin, the ∆p obtained from (7) is
accepted. In other words, FIM sets ṡ = 0 in this case,
meaning that it treats the interfaces above and below
the layer in question as material. If one of the above
conditions is not met, the “grid generator” (see following
section) takes over and changes ∂∆p/∂t in a way that
either maintains minimum thickness or, if the layer has
become separated from its target potential temperature,
moves it closer to it. In these situations, the selected
∆p tendency is inserted into the full continuity equation
(4) which at this point becomes a diagnostic equation for
the interlayer mass fluxes ṡ∂p/∂s. The latter are used to
vertically advect momentum and other variables.

The above process is complicated by the need to in-
clude conditions in several layers when deciding on the
value of ṡ∂p/∂s on a given interface. However, as long
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as ∆pmin > 0 is imposed only on layers at the bottom
or top of the column, the test for nonzero ṡ∂p/∂s can be
carried out recursively by a single sweep up or down the
column, i.e., does not require iteration.

Hydrostatic models infer the vertical component of
motion from the vertically integrated horizontal mass flux
divergence. The grid generator in an ALE model divides
this material vertical motion into two components: verti-
cal motion of the coordinate surface and vertical air mo-
tion relative to it:
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The decision whether to accept the solution of (7) –
that is, whether to balance the right-hand side of (8) by
only the first term or by some combination of both terms
on the left – is made by the grid generator at each gid
point and each time step individually. The grid genera-
tor in FIM actually performs two tasks: it carries out the
“regridding” just described, followed by a vertical “remap-
ping” of all prognostic variables to the modified grid. The
remapping is formally equivalent to vertical advection be-
cause it is driven by nonzero values of ṡ. However, since
vertical displacement of atmospheric constituents due to
actual air motion is already accounted for in the heaving
and slumping of coordinate layers, the evaluation of the
ṡ terms in the prognostic equations is best viewed as a
secondary property redistribution initiated by the migra-
tion of coordinate surfaces through resting air. With the
atmosphere conceptually “frozen” in time during this re-
distribution, remapping should conserve certain integral
properties such as column integrals of momentum, ther-
mal energy, etc.

Turbulent vertical mixing is typically parameterized in
large-scale atmospheric models by solving a vertical dif-
fusion equation with an eddy diffusivity coefficient de-
signed to incorporate the effects of stratification, wind
shear, etc. In an isentropic framework, one of the dif-
fused variables is an independent variable, namely, the
vertical coordinate θ. The approach taken in FIM to deal
with this peculiarity of isentropic modeling is described in
the Appendix.

5. The Vertical Grid Generator

5a. Background

Owing to differences in the vertical staggering of vari-
ables, not all schemes existing today for maintaining the
vertical grid structure in ALE-type hybrid-isentropic layer
models are interchangeable. The scheme developed for
RUC (Bleck and Benjamin 1993; Benjamin et al. 2004)
in particular cannot be used directly in FIM. Instead, the
technology suitable for the staggered FIM grid had to be
imported from the ocean model HYCOM.

The first-generation HYCOM grid generator, whose
design principles are described in detail in Bleck (2002)
but date back to Bleck and Boudra (1981), has been
modified and tuned over the years to address grid de-
generacies that came to light as the range of applications
of HYCOM grew. This tuning has added branches to the
decision tree in the original algorithm, creating a situa-
tion where the underlying logic is no longer transparent
to the user. Complexity in the grid generator discourages
experimentation and adaptation of HYCOM/FIM to spe-
cial modeling needs, and hence should be avoided.

The algorithm described below represents an attempt
to get “back to basics” when moving layer interfaces for
the sake of maximizing the part of the atmosphere repre-
sented by isentropic layers while at the same time sub-
jecting the layers to minimum-thickness constraints. In
the first-generation grid generator, each grid point is in-
spected and adjusted recursively in light of its distance
to grid points above and below, using a variety of semi-
empirical criteria. The algorithm proposed here is more
straightforward in that it begins by transforming a given
hybrid stairstep θ profile into a purely isentropic one, i.e.,
into a stairstep profile whose θ levels are prescribed be-
forehand. Depending on the stratification and θ range in
the original profile, this process can produce massless
(zero thickness) layers at the top and bottom of the col-
umn. Massless layers that occur at the ground are sub-
sequently inflated to a prescribed minimum thickness.

Differences between the resulting hybridized layer in-
terface pressures and those of the input profile imply
mass exchange among layers. Tracers and momentum
must then be exchanged between layers as well. Any
one of the standard conservative advection schemes can
be used for this task.
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5b. Transformation of non-isentropic stairstep θ profiles
to isentropic coordinates

The following is an adaptation of the ocean-oriented
scheme described in Appendix D of Bleck (2002).

Let Z be a monotonic function of p decreasing
with height, and let θin(Z) be a piecewise constant
(“stairstep”) vertical profile of θ. Both the step width ∆θin

and the step height ∆Z can vary from step to step. Our
task is to transform θin(Z) into another stairstep profile
differing from the original one in that the location of the
“risers” on the θ axis is prescribed. Ideally, the transfor-
mation should be accomplished without perturbing the
potential/internal energy of the column. Another quantity
worth preserving is the geopotential height of the col-
umn, because a transformation that changes the column
height is likely to set off external gravity waves.

Let θk (k = 1, ..., n, θk+1 > θk, k increasing upward)
mark the points on the θ axis where we want the new
risers to be placed. We require that the θk values span
the θ range of the input profile,

θ1 ≤ θin(Z) ≤ θn for all Z, (9)

and that the input profile be monotonic. Denoting the
pressure1 of the lower and upper interface bounding the
k-th layer by Zk−1/2 and Zk+1/2, respectively, the condi-
tion we wish to satisfy can then be stated as

n
∑

k=1

θk(Zk−1/2 −Zk+1/2) =

∫

Z1/2

Zn+1/2

θin dZ. (10)

The interface pressures are the unknowns in the prob-
lem.

Integration by parts (on the left this amounts to re-
ordering the terms under the summation sign) allows us
to rewrite (10) as

θ1Z1/2 − θnZn+1/2 +

n−1
∑

k=1

Zk+1/2(θk+1 − θk)

= [θinZ]
Z1/2

Zn+1/2
+

∫ θin(Zn+1/2)

θin(Z1/2)

Zin(θ) dθ

where Zin(θ) is the inverse of θin(Z).

In situations where the θ range of the input profile
does not span the entire range θ1...θn, we can, without al-
tering the physical appearance of the input profile, lower

1While Z is a function of pressure, we will refer to it as pressure for
short.

θin(Z1/2) to θ1 and/or raise θin(Zn+1/2) to θn. With these
modifications, the above expression reduces to

n−1
∑

k=1

Zk+1/2(θk+1 − θk) =

∫ θn

θ1

Zin(θ) dθ. (11)

Our strategy is to satisfy (11) by breaking the integral
into pieces taken over intervals (θk, θk+1) and conserving
each integral individually. This immediately leads to

Zk+1/2 =
1

θk+1 − θk

∫ θk+1

θk

Zin(θ) dθ (12)

(k = 1, ..., n−1).

If condition (9) is violated, evaluation of (12) is post-
poned until the offending input layer is brought into com-
pliance by “diluting” it with mass from adjacent layers.
Persistent heating at the model top, for example, is
thereby transformed into a gradual thickening of the up-
permost coordinate layer.

5c. Enforcement of layer thickness constraints

Suppose the prescribed potential temperature values
θ1, θ2, .... in the output profile cover a wide enough range
to yield θk < θin for some k > 1. In this case, (12)
will yield Z1/2 = Z3/2 = ... = Zk+1/2, i.e., layers 1, ..., k

in the transformed profile will be massless. Likewise, if
θin < θk for some k < n, layers k+1, ..., n will be rendered
massless (Zk+1/2 = ... = Zn+1/2).

The strategy in FIM is to accept massless layers aloft,
but to always inflate massless layers at the bottom of the
grid column. Layer inflation rules can be as simple as
specifying a constant minimum thickness ∆Z0. In this
case the set of isentropic interface values Zk+1/2 ob-
tained from (12), to be identified here as Ẑk+1/2 to distin-
guish them from the final “hybridized” values, are recur-
sively subjected to the constraint

Zk+1/2 = min(Ẑk+1/2,Zk−1/2 − ∆Z0) (13)

(k = 1, 2, ...). Note that ∆Z0 can easily be made layer-
dependent or scaled by terrain height.

It is advisable to smooth out large lateral variations
in layer thickness that typically occur where a hybridized
coordinate layer transitions from the fixed-depth to the
isentropic subdomain. These variations are created
when, for a given k, the 2nd argument in the minimum
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function of (13) is chosen in one grid column, while the
1st argument is chosen in a neighboring column. One
way to smooth out the transition, short of exchanging
information among neighboring grid columns, is to in-
crease layer thickness in situations where the two argu-
ments are of similar magnitude. This is the purpose of
the “cushion” function originally introduced into hybrid-
coordinate ocean modeling by Bleck and Boudra (1981)
and later adapted for atmospheric use by Bleck and Ben-
jamin (1993). Use of the cushion function entails replac-
ing (13) by

Zk+1/2 = min(Ẑk+1/2,Zk−1/2

−cushn[Ẑk−1/2 −Zk+1/2, ∆Z0]). (14)

In the two extreme cases where Ẑk−1/2−Zk+1/2 is either
large negative or large positive compared to ∆Z0, the
cushion function is designed to replicate the functionality
of (13). In other words, cushn(a, b) returns a if a >> b,
and it returns b if −a >> b (b > 0). In between the two ex-
tremes, cushn varies smoothly, returning values as high
as 2 max(a, b). In many cases, this widens a layer if its
potential temperature is close to target, thereby soften-
ing the lateral interface height contrast between locations
where the underlying layer is isentropic and where it is
not.

If more effective interface smoothing in the σ-θ transi-
tion region is deemed nececessary, a sideways-looking
smoothing algorithm may be required.

At the time of this writing, the minimum thickness
value ∆Z0 is set as follows.

1. A default value ∆Z0(k) is specified for each layer
k. Typical values (stated here in pressure units for
easier reference) are 3 hPa in the bottom layer, grad-
ually increasing to 10 or 15 hPa in layers above.

2. In an attempt to mimic the vertical spacing of con-
ventional σ coordinate layers, all ∆Z0(k) are mul-
tiplied by the factor (psrf − ptop)/(1000 hPa − ptop)

where psrf is the surface pressure and ptop is the
pressure level (400 hPa or smaller) where coordi-
nate surfaces in a conventional σ coordinate model
cease to be terrain-following.

3. Starting in the lowest layer and moving up the col-
umn, Zk+1/2 is compared against the lesser of (14)

and Z1/2−
∑k

n=1 ∆Z0(n). If it exceeds the minimum
of these two values, it is replaced by that minimum.

This is done recursively, i.e., altered interface values
affect the inflation test in layers above.

4. The lowest layer not in need of inflation is labeled
kσθ; it marks the transition from the σ to the θ sub-
domain.

5. The upper interface of layer kσθ stays fixed by def-
inition, but very thin isentropic layers qualifying for
inflation based on (14) can occur higher up in the
atmosphere. To keep these from unnecessarily be-
ing inflated, the value ∆Z0(k) is reduced in layers
kσθ +1, ..., kσθ +4 by the factors 0.4, 0.2, 0.1, and
0.05, respectively. The factor 0.05 is also used in
layers k > kσθ+4.

5d. Vertical advection

The “regridding” process described in the preceding sec-
tions must be followed by a “remapping” process in which
model variables are advected vertically in response to
changes in interface pressure. Borrowing from HYCOM,
vertical advection of momentum and tracers is currently
handled by either the piecewise linear or the piecewise
parabolic method (PLM, PPM) (van Leer 1974; Colella
and Woodward 1984). All variables mentioned are
remapped in p space to conserve their mass-weighted
column integral.

Potential temperature is a special case. The regrid-
ding process described earlier yields a new θ distribution
that may be viewed as resulting from upstream or donor
cell advection in Z space. To suppress the numerical
diffusivity implied by this low-order scheme, FIM actually
discards the θ field resulting from the regridding exercise
and replaces it by a field advected by the same higher-
order scheme that is used for the other prognostic vari-
ables.

There is a price to be paid for inferring the amount of
mass transferred between layers from a piecewise con-
stant θ distribution, as is done in (10)–(12), and subse-
quently using a higher-order scheme to remap θ. Nei-
ther will the slab of air arriving in a layer have the po-
tential temperature needed to precisely restore that layer
to target, nor will the transfer leave θ in the donor layer
unchanged. However, we find that repetitive use of the
restoring algorithm allows layers to reach their target rel-
atively quickly.

One advantage of using a higher-order advection
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scheme for θ is that the variable Z in (10) – (14) no
longer needs to be chosen with an eye on the conser-
vation properties of the regridding scheme. Any variable
monotonic in pressure, including p itself, is acceptable.
What matters now is the vertical coordinate used during
remapping of θ. FIM allows the use of either (p/p0)

κ or
(p/p0)

1+κ (where κ = R/cp). The rationale for providing
these two options is given in the following section.

5e. Conservation alternatives

It follows from (6) that the height of an air column can be
preserved during vertical regridding and remapping by
setting Z = Π. Unfortunately, this choice of Z does not
allow us to satisfy another important constraint: conser-
vation of column-integrated internal energy I =

∫

cvTdp

and column-integrated potential energy P =
∫

gρz dz.
(In an ideal gas, internal and potential energy are pro-
portional to one another, so conservation of one entails
conservation of the other.) The incompatibility of column
height conservation with internal/potential energy con-
servation becomes clear if one writes P and I in terms
of θ and p and compares the resulting expressions

I =
cvp0

g(1 + k)

∫

θ d

(

p

p0

)1+k

(15)

P =
R p0

g(1 + k)

∫

θ d

(

p

p0

)1+k

(16)

(k = R/cp) with the formula for column height,
∫

θdΠ,
in which θ is integrated over a variable proportional to
(p/p0)

κ. It is easy to see now that conservation of I

and P can be achieved during remapping of θ by using
(p/p0)

1+k as vertical coordinate, but that this can only
be done at the price of violating the height preserva-
tion constraint. The relative importance of height versus
internal/potential energy conservation is hard to assess
without practical tests.

5f. Miscellaneous refinements

Discretization of a continuous profile θ(p) in term of a
stairstep profile is not unique, because stairsteps can be
broken into smaller steps or combined into bigger ones
without violating any continuity or conservation princi-
ple. This ambiguity can lead to computational modes
in the vertical layer structure, leading to the gradual dis-
appearance of, say, odd-numbered layers accompanied

by a thickening of even-numbered ones. Initial experi-
ments with FIM indeed revealed a propensity for ampli-
fying this mode. To suppress it, a special algorithm has
been added to the grid generator.

The algorithm scans each grid column for sequences
of 5 ∆p values, numbered ∆p1, ..., ∆p5, that satisfy the
following three conditions:

∆p1 < ∆p2

∆p5 < ∆p4

∆p3 < min(∆p2, ∆p4).

If all three conditions are met, layer 3 is inflated by
drawing mass from both layers 2 and 4 such that (a)
the column integral of θ is conserved and (b) ∆pnew

3 =

min(∆pnew
2 , ∆pnew

4 ). Requirement (a) leads to the con-
straint

∆p2 − ∆pnew
2

∆p4 − ∆pnew
4

=
θ4 − θ3

θ3 − θ2

which may put a limit on the mass transfer stipulated by
(b). The resulting interface displacements are added to
those associated with the primary regridding process.

Suppression of the layer thickness computational
mode improves the performance of the column physics
parameterization scheme which has been found to be
sensitive to large variations in layer thickness.

5g. An example

Some design options suitable for an ALE coordinate in
atmospheric models are illustrated in Fig. 1. The figure
shows a meridional cross section (latitude increasing to
the left) that cuts across a typical midlatitude jet stream
in thermal wind balance with sloping tropospheric isen-
tropes. Three elements are combined in the figure. Solid
lines running across each panel represent layer inter-
faces. Shaded contours represent zonal wind speed.
Colors filling alternate spaces between isotachs show
potential temperature. The purpose of the coloration is
to indicate where in the domain a given coordinate layer
is isentropic. The rendering is not exact because the
columnwise steppy θ field has been converted into a con-
tinuous field and interpolated to p space to simplify plot-
ting.

The first panel in Fig. 1 shows a layer configuration
typically seen in pure isentropic coordinate models like
those of Bleck (1984) and Zhu et al. (1992). Since FIM
evaluates lateral fluxes terms in (4) and (5) using the Flux

8



Figure 1: Vertical-meridional cross section illustrating the functionality of the ALE coordinate in FIM. Solid lines:
layer interfaces Shaded contours: isotachs (m s−1). Color scheme: potential temperature (K). Ordinate: pressure
(hPa). Horizontal extent: 5000 km

Corrected Transport scheme which permits layer thick-
ness to go to zero (Lee et al. 2009), FIM can actually
operate stably in the pure isentropic mode depicted in
panel 1. The rationale for building this capability into FIM
was to remove numerical-stability related constraints on
the choice of minimum layer thickness.

Passing the configuration shown in panel 1 of Fig. 1
to the FIM grid generator yields the configuration shown
in the second panel (upper right). As described in de-
tail above, the grid generator inflates layers that intersect
the ground – the ones shown as massless layers in the
first panel – but leaves higher layers unmodified. It also
tries to remove thickness variations from the lowest layer
to aid in the calculation of surface fluxes. The shallow
layers formed in this way near the earth’s surface are, of

course, no longer isentropic. A configuration similar to
this one but with much higher vertical resolution is used
in RUC (Benjamin et al. 2004) and in FIM. For illustrative
purposes, minimum layer thickness ∆pmin in this exam-
ple is set to 30 hPa. FIM and RUC typically use values in
the 10-20 hPa range.

The third panel (lower left) illustrates how the ALE co-
ordinate reacts to the presence of a mountainous fea-
ture like the Tibetan Plateau. To keep the mountain from
creating a nonisentropic coordinate cap extending to jet
stream levels, ∆pmin is reduced over high terrain as it
would be in a σ coordinate model.

In the fourth panel we give an example of how one
could modify the ALE coordinate to optimize layer spac-
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Figure 2: 84-, 96-, 108-, and 120-hr forecasts of geopotential height (m) and absolute vorticity (10−5s−1) at 300 hPa.
Initial time: 0000GMT, 19 Oct. 2008. Top 4 panels: forecasts based on FIM “native” σ−θ grid. Bottom 4 panels:
FIM forecasts using GFS σ−p grid. Horizontal resolution: G8 (∼30 km).
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ing at low latitudes where cloud physics parameteriza-
tion schemes typically demand more uniform vertical grid
spacing than that shown in panel 2. A layer expansion
feature like the one in panel 4 would be particularly de-
sirable in a model that uses an extremely low ∆pmin for
the sake of maximizing isentropic grid representation in
the extratropics. Given the rather large value of 20 hPa
currently used in FIM, refinements of this type are not
contemplated at this time.

Because of the continuous rendering of the steppy θ

field, the color fields in Fig. 1 do not accurately reflect
θ in each layer, as already mentioned. However, some
color irregularities in regions where interfaces have been
pushed up or down by the grid generator are the result
of vertical advection errors.

This brings up an important point. The flexibility of the
ALE scheme might compel a model architect to design
a coordinate system that requires interfaces to periodi-
cally move over large distances through the fluid. Such
a design, an obvious violation of the “flow-following” con-
cept, can lead to vertical advection and associated dissi-
pation errors far in excess of those typically encountered
in a fixed grid. One example of an ill-advised ALE algo-
rithm is to attach a coordinate surface to the top of the
planetary boundary layer for the sake of cleanly separat-
ing well-mixed from stratified air layers. Due to the po-
tentially large difference between daytime and nighttime
boundary layer height and the ensuing need to move
large amounts of air back and forth across the pulsat-
ing interface, advantages gained by separating regions
of large and small vertical mixing are likely to be lost.
The best strategy is to make coordinate surfaces either
truly Lagrangian or, if that is impractical, keep them fixed
in space.

There are situations where not only time- but also
space-dependent ∆pmin values of the kind shown in
panel 4 of Fig. 1 must be avoided. Consider, for exam-
ple, a model in which the Sadourny (1975) or Arakawa
and Lamb (1981) approach is used to formulate the
momentum equations in potential-entrophy conserving
form, with layer thickness ∆p taking the place of ∂p/∂θ

in the potential vorticity expression (ζ + f)(∂p/∂θ)−1. In
the σ coordinate subdomain, lateral variations imposed
on ∆p by the grid generator will in this case introduce bo-
gus lateral potential vorticity gradients which can distort
the flow evolution inappropriately. FIM avoids this pitfall
by using vorticity, not potential vorticity, in (3). HYCOM

uses the Sadourny (1975) formulation but makes ∆pmin

a function of layer index only, effectively replacing poten-
tial vorticity by absolute vorticity inside the p coordinate
subdomain.

6. A sensitivity study

A displaced fluid parcel that does not experience a buoy-
ancy force driving it back to its original location is likely to
remain in contact with its new surroundings longer than
it otherwise would be. This gives the parcel some extra
time to exchange properties with the surrounding fluid.
Consequently, turbulent mixing in stratified fluids takes
place preferentially along surfaces of constant potential
buoyancy (i.e. buoyancy corrected for compressibility ef-
fects).

With potential buoyancy and entropy being synony-
mous (or nearly so) in the atmosphere, turbulent ex-
change tends to minimize isentropic gradients of prop-
erties such as momentum (Rossby and Collaborators
1937). Replicating this process in a numerical model
is not easy if coordinate surfaces do not coincide with
isentropes. Dispersion errors associated with horizontal
transport in a model tend, over time, to destroy property
contrasts on whichever surfaces the transport is being
carried out. Only if the transport equations are solved on
isentropic surfaces can this numerical dispersion error
be hidden behind what we may call a “smokescreen” of
naturally occurring mixing. Being able to do this is espe-
cially advantageous in long-term simulations of statisti-
cally stationary or slowly varying states that in nature re-
sult from a balance between external forcing, transport,
and turbulent mixing.

Note that the above argument refers to numerical er-
rors associated with lateral transport – that is, errors
caused by the dispersive properties of the horizontal ad-
vection operator. Errors arising during evaluation of ex-
plicit mixing terms (which FIM is free of) can also be im-
portant. However, these can be reduced – to some ex-
tent at least – by aligning the main axes of the mixing
tensor with isentropic surfaces (Redi 1982). An equiva-
lent strategy to project the effect of numerical dispersion
in the transported field onto isentropic surfaces has not
yet been developed.

The flexibility of the ALE coordinate allows us to shed
light on the correctness of the assertion that numerical
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Figure 3: As in Fig. 2 but for G7 (∼60 km) resolution.
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Figure 4: As in Fig. 2 but for G6 (∼120 km) resolution.
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accuracy of transport processes benefits from isentropic
coordinate representation. We will do this by changing
the vertical coordinate in FIM from hybrid σ−θ to a more
traditional combination of σ and p and will look for at least
anecdotal evidence that simulations based on the first-
mentioned coordinate yield more coherent patterns of
dynamically relevant quantities than simulations based
on the latter.

A tracer well suited for this purpose is the absolute
vorticity η = ∂v/∂x − ∂u/∂y + f . Even though η is nei-
ther explicitly advected in primitive equation models, nor
is it rigorously conserved (especially if the u, v deriva-
tives are taken at σ = const as opposed to θ = const),
the fact that vorticity is composed of spatial derivatives
of the velocity field and interacts with the circulation in
a two-way mode makes it a particularly sensitive indi-
cator of forecast errors. We will focus in the following
on the process of tropospheric Rossby wave breaking
(McIntyre and Palmer 1985), also referred to as vortex
rollup (Dritschel and Polvani 1992) or, in synoptic mete-
orologists’ parlance, cutoff low formation.

Three synoptic cases were analyzed in detail for this
article. Space limitations permit us to present only one
of them in detail. Limited results from the other cases
will be included to indicate that trends in forecast accu-
racy as functions of horizontal resolution and vertical grid
were not unique to the first case.

The vortex rollup process, and the failure of some
model versions to simulate it accurately, were found to be
depicted most succinctly by the vorticity and geopotential
height distribution on the 300 hPa isobaric surface. We
will therefore confine our attention to 300 hPa flow pat-
terns and will first focus on forecasts over North Amer-
ica extending 3.5 to 5 days beyond the initial time of
0000GMT, 19 Oct. 2008. (The other two cases depict
vortex rollup events over Europe four weeks later and
over the Southern Ocean in late austral summer.)

A total of eight FIM forecasts were carried out, four
using the native FIM coordinate and four using the GFS
σ−p coordinate. The switch from the former coordinate
to the latter is accomplished in FIM by replacing the stan-
dard hybrid-isentropic grid generator by one that simply
restores interface pressures to the values prescribed by
the GFS. No other changes are made to the model.

The forecasts within each group of four differ by hori-
zontal grid resolution. As outlined in Sec.3a of Lee and

MacDonald (2009), recursively bisecting the sides of the
20 triangles in the icosahedron quadruples the number
of hexagonal cells on the sphere. In the experiments re-
ported here, the number of cells ranges from ∼10,000
(referred to as G5 resolution – 5 bisecting steps) to
∼655,000 (G8, 8 bisecting steps). The mesh size is
∼240 km at G5 and ∼30 km at G8 resolution; mesh size
varies by approximately 15% over the sphere.

The figures for case 1 are organized as follows. Re-
sults obtained by FIM configured with its standard hy-
brid σ−θ coordinate are displayed in the top 4 panels of
Figs. 2-5. Corresponding results obtained by substituting
the hybrid σ−p coordinate for the “native” FIM coordinate
are shown in the bottom 4 panels of each figure. Coordi-
nate values in the σ−p grid are identical to those used by
the Global Forecast System at the NOAA National Cen-
ters for Environmental Prediction. Both grids used here
consist of 64 layers.

We begin by showing in Fig. 2 the rollup process as
simulated at the highest available resolution of 30 km
(G8). The forecasts clearly depict the process by which
mixing in fluids takes place: initally compact fluid el-
ements are continually deformed into long, thin fila-
ments that create sharp property gradients subsequently
eroded by molecular diffusion. How important explicit
simulation of this stretching or stirring process is for cli-
mate modeling is an important open question. There is
no doubt, however, that such explicit simulation is impor-
tant in numerical weather prediction because property
gradients formed by filamentation often spawn severe lo-
cal weather events.

Fig. 2 indicates that the σ−θ forecast carries the fil-
amentation process somewhat farther in time than the
σ−p forecast. In fact, it may carry it too far. Compari-
son to observed conditions on 23 Oct. 2008 (not shown
here) indicates that FIM using its native coordinate ac-
tually over-intensifies the cutoff vortex. Further experi-
mentation will be required to determine whether omis-
sion of explicit subgridscale mixing terms in FIM is an
occasional detriment to forecast accuracy.

The following figures depict the rate at which the fil-
amentation and rollup process is degraded with lower
grid resolution. At G7 (60 km) resolution (Fig. 3), the vor-
ticity streamer in the σ−θ forecast is seen to maintain
its integrity, even to the extent that its spiral structure
at 120 hrs is better defined in this forecast than in the
previous one. Larger changes between Fig. 2 and Fig. 3
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Figure 5: As in Fig. 2 but for G5 (∼240 km) resolution.
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Figure 6: 132-, and 144-hr forecasts of geopotential height (m) and absolute vorticity (10−5s−1) at 300 hPa. Initial
time: 0000GMT, 17 Nov. 2008. Top: forecasts based on FIM “native” σ−θ grid . Bottom: FIM forecasts using GFS
σ−p grid. Horizontal resolution: G8 (∼30 km).

are noticeable in the σ−p forecast, and these changes
foreshadow a rather precipitous decline in filament defi-
nition with descreasing grid resolution in σ−p mode. The
300 hPa surface at 120 hrs in the σ−p forecast has risen
by 10 m as a result of the resolution change, and the vor-
tex is located too far to the west.

It is worth noting that even in a perfect model simula-
tion the filament patterns in σ−θ and σ−p forecasts would
differ because the plotted vorticity is based on winds dif-
ferentiated at constant θ in one model version and at con-
stant p in the other. (At 300 hPa, the GFS coordinate is
nearly isobaric.)

The trend suggested by Figs. 2 and 3 continues as
mesh size is doubled again, to 120 km (Fig. 4). At this

resolution the streamer in the σ−θ forecast loses its dis-
tinctive spiral character, but its forward edge still shows
signs of being wrapped around the vortex at 120 hrs. In
the σ−p forecast at 120 km resolution, the vorticity field is
devoid of sharp maxima and the rollup process is greatly
weakened. The trough line develops a serious tilt toward
the southwest.

At 240 km spatial resolution (Fig. 5) the σ−θ forecast
finally shows signs of serious degradation, reminiscent
of what we saw at higher resolution in the σ−p forecast.
Vortex rollup is no longer taking place, even though the
erroneous tilt of the trough line is less serious in Fig. 5
(top panels) than in the 120 km σ− p forecast (bottom
panels of Fig. 4). The trough in the 240 km σ−p forecast
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Figure 7: As in Fig.6 but for G7 resolution (∼60 km).

no longer shows signs of amplification during the 84- to
120 hr time frame.

As mentioned, due to space limitations and to avoid
being unduly repetitious we will present material from
the other two cases only as needed to amplify the points
made above.

G8 forecasts over central Europe extending 5.5 and
6 days out from the starting date of 0000GMT, 17 Nov.
2008 (Fig. 6) show the by-now familiar differences be-
tween the two FIM versions. The vorticity streamers in
the σ− θ forecast look tighter, and while the speed at
which they wrap around the vortex appears to be similar
in the two forecasts, the total amount of vorticity drawn
into the vortex – if this can be judged by looking at a map
– apears to be stronger in the σ−θ forecast, explaining
the extra deepening at 144 hrs compared to the σ−p fore-

cast.

Like in the earlier case, the discrepancy between σ−p

and σ−θ forecasts becomes more pronounced with lower
horizontal resolution. We only show here results for the
G7 (60 km mesh size) experiments (Fig. 7). Streamers
have virtually disappeared from the σ−p forecast, and
there is only a hint of a cutoff low. The σ− θ forecast
is holding its own. In fact, there is a striking semblance
between the vorticity patterns in the G7 σ−θ forecast and
the G8 σ−p forecast.

Three- and 3.5-day 300 hPa forecasts at G8 resolu-
tion over the Indian Ocean sector of the Southern Ocean
are shown in (Fig. 8). Initial time is 0000GMT, 7 February
2009. This is a late summer case; hence, vorticity con-
trasts are not as strong as in the other cases. The color
scale has been adjusted to take this into account.
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Figure 8: 72-, and 84-hr forecasts of geopotential height (m) and absolute vorticity (10−5s−1) at 300 hPa. Initial time:
0000GMT, 7 Feb. 2009. Top: forecasts based on FIM “native” σ−θ grid . Bottom: FIM forecasts using GFS σ−p grid.
Horizontal resolution: G8 (∼30 km). Maps are cropped to show pieces of Madagascar and Australia for orientation.

Differences in the large-scale vorticity pattern be-
tween σ− p and σ− θ forecasts are minor at this high
resolution, even though the vorticity filaments apperar to
be slightly more coherent in the σ−θ forecast.

The weakening of the wave-breaking process with de-
creasing horizontal resolution is not as pronounced as
in the previous cases. Despite the relatively low reso-
lutution of 120 km in the G6 forecasts shown in Fig. 8,
the remnants of a vorticity spiral are still very noticeable
at 72 hrs in the σ−θ forecast (upper left panel) whereas
there is nothing left of it in the σ−p forecast. As in the
November 2008 case, the “amount” of vorticity trapped
in the vortex appears to be higher in the σ−θ forecast,
leading to a slightly stronger cutoff vortex.

An alternate view of the difference between the two
forecasts is provided in Fig. 10. The cross sections
shown correspond in time and grid resolution to the fields

in Fig. 9. The sections slice through the vortex in zonal
direction, thereby creating a butterfly pattern in the ve-
locity field. The jet in the σ−θ forecast is the stronger
one, roughly 5 ms−1 on the upstream side and 10 ms−1

on the downstream side. The difference in strength is
conceptually consistent with the fact that the doming of
isentropes in the vortex center reduces velocity gradients
along coordinate surfaces on the cyclonic side of the jet,
thereby lessening numerical dissipation of cyclonic vor-
ticity below jet stream level.

7. Discussion

Evidence we have accumulated so far, though still largely
anecdotal, suggests that FIM using its native σ−θ coordi-
nate maintains the integrity of tropospheric vorticity fila-
ments better with decreasing resolution than the same
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Figure 9: As in Fig.8 but for G6 resolution (∼120 km).

model using a σ − p coordinate adopted from NCEP’s
Global Forecast System. The evidence is based on three
extensively analyzed cases and on a few more cases an-
alyzed in less detail, all chosen from the time period fall
2008 through winter 2009.

Nevertheless, the reasoning for why different trends in
the simulation of Rossby wave breaking in the two model
versions are to be expected is straightforward. As ar-
gued earlier, numericallly induced lateral mixing of fine
structures generated by filament stretching is least detri-
mental to forecast accuracy in models whose mixing sur-
faces coincide with iso-surfaces of potential buoyancy.
FIM with its σ−θ grid represents such a model, at least
above the lowest few kilometers of the atmosphere.

One seeming flaw of the above case study is the jux-
taposition of two different vorticity fields – one, ηθ, based
on differentiation at constant θ and one, ηp, on differen-
tiation at constant p. For this reason, comparison of ηp

with ηθ at the same spatial resolution is less meaningful

than a comparison of the resolution dependence of ei-
ther the ηθ or the ηp field by itself. We should therefore
refrain from making conclusions such as “filament sim-
lation in the σ−θ model at Gn resolution (where n is a
natural number) compares accuracy-wise to simulation
in the σ−p model at resolution Gn+1.” On the other hand,
it seems permissible to conclude that the deterioration
of forecast accuracy with decreasing resolution is more
rapid in the σ−p simulations than the σ−θ simulations.

Even if quantitative information cannot be drawn from
it, the exercise of plotting ηθ on p surfaces and compar-
ing the resulting distribution with ηp plotted on the same
surfaces is still informative. It illustrates the level of de-
tail in a dynamically relevant tracer field that in an isen-
tropic coordinate model, by virtue of coordinate surface
orientation, is largely shielded from nonphysical dissipa-
tion. The ηp field in the FIM version featuring a σ−p co-
ordinate, on the other hand, directly feels the impact of
numerical dissipation and deteriorates with time accord-
ingly. It remains to be seen, of course, whether some
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Figure 10: Zonal cross sections at 50S, 50E – 120E, extracted from 72-hr G6 forecasts based on σ−θ coordinate
with 5 hPa minimum layer thickness (left) and GFS σ−p coordinate (right). Features shown in the sections are
explained in Fig. 1.

degree of deterioration might not be realistic. In other
words, the question will have to be addressed whether
the FIM equations should retain their present frictionless
form or be amended by explicit mixing terms.

8. Closing remarks

Material has been presented supporting the notion that
“flow-following” or quasi-Lagrangian vertical coordinates
are a viable alternative to the Eulerian coordinates com-
monly used in atmospheric circulation modeling. This
point, of course, has been made before by members
of the Wisconsin and UCLA schools [Johnson (2000),
Arakawa (2000), Randall et al. (2000), among others].
What is new about the present effort is that for the first
time a quasi-isentropic coordinate model is being used
on a routine basis for real-time, medium-range global
weather prediction. Comparing FIM with the other two
hybrid-isentropic models routinely used for weather pre-
diction today, FIM differs from RUC (Benjamin et al.
2004) primarily in the use of an icosahedral global
grid and from the University of Wisconsin global model
(Schaak et al. 2004) in the use of an ALE coordinate.

Not all components of FIM are new. Model “physics”

routines were made available to FIM developers by the
group responsible for the Global Forecast System at the
NOAA National Centers for Environmental Prediction;
FIM development efforts have greatly benefitted from this
collaboration. Likewise, the global fields used to initialize
FIM are imported directly from NCEP.

This said, FIM is unique in having combined two
novel approaches to numerical weather prediction: (1)
icosahedron- and finite volume-based horizontal dis-
cretization and (2) an entropy-based vertical coordinate.
The present article domuments the latter aspect in de-
tail. In addition, material is presented suggesting that
numerical diffusion attributed to the dispersive effects of
the horizontal transport operators can be rendered less
destructive by solving the dynamic equations in an isen-
tropic coordinate system. The question of whether this
by itself leads to improved forecast accuracy has not
been explored in this article but will be the subject of fu-
ture work.
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9. Appendix: Turbulent Vertical Mix-
ing

The following is a simplified version of a numerical
scheme developed by McDougall and Dewar (1998) for
carrying out vertical mixing in fluid models whose vertical
coordinate is a function of the diffused variable(s). They
deal with the specific problem of mixing temperature and
salinity in ocean models whose vertical coordinate is po-
tential density (a function of both temperature and salin-
ity), constrained to remain constant in each coordinate
layer during mixing.

Here we deal with the much simpler problem of solv-
ing the diffusion equation in an atmospheric column
where there is only one diffused variable (potential tem-
perature θ) doing double duty as vertical coordinate. The
only variable capable of capturing the effects of thermal
diffusion in this case is the thickness of coordinate layers.

The equations expressing conservation of mass and
heat in a column, basically 1-D versions of the equations
listed in the beginning, are

∂
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The turbulent heat flux Fθ = w′θ′ is usually parameter-
ized as Fθ = −K∂θ/∂z where θ is the resolved-scale
potential temperature and K is a thermal diffusivity coef-
ficient.

The flux form of (18), obtained by combining (17) and
(18), is
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θ
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= −
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The task at hand is to discretize the above equations
for use in a model framework where stratification is rep-
resented by a piecewise constant, stairstep θ profile.
The discretization will be done by formally integrating the
equations over individual stairsteps.

If θ is to remain constant in each layer during the mix-
ing process, Fθ must be vertically constant in each layer.
If this were not the case, integrating (18) over an individ-
ual layer would yield a nonzero right-hand side. Of the
two terms on the left, the second one integrates to zero

since ∂θ/∂z = 0 inside the layer. (The vertical mass flux
(ṡ∂z/∂s) remains finite.) Hence, a nonzero r.h.s. implies
a nonzero tendency term ∂θ/∂t which clashes with the
stated requirement.

We conclude: for diffusion to leave a mark on the pro-
file under the constraint Fθ = const in individual layers,
Fθ must be allowed to vary from layer to layer. The im-
plied infinite heat flux divergence at layer interfaces is
consistent with the notion that air crossing an interface
undergoes an instantaneous change in θ.

A simple centered finite-difference expression for the
heat flux in layer n is

Fn
θ =

Kn

2

θn+1 − θn−1

zn+1/2 − zn−1/2
(20)

where fractional superscripts indicate quantities defined
on interfaces.

The central task is to determine the mass flux across
layer interfaces, (ṡ∂z/∂s). For this we integrate (19) over
an s interval representing an infinitesimal slab bracketing
a layer interface. Since the tendency term drops out as
∂z approaches zero and the mass flux (ṡ∂z/∂s) is con-
tinuous in the vertical, we obtain in the limit of zero slab
thickness

(

ṡ
∂z

∂s

)n+1/2

=
Fn+1

θ − Fn
θ

θn+1 − θn
. (21)

Expressions (20) and (21) encompass the sought-
after solution to the problem of diffusing heat in a
stairstep θ profile while maintaining θ in individual lay-
ers. Note that, in the absence of externally imposed heat
fluxes, the column integral

∫

θdz is conserved regardless
of the physical and numerical approximations made in
evaluating the heat flux (20).

The heat flux as approximated by (20) becomes infi-
nite in massless layers. To avoid division by zero, the de-
nominator in (20) must therefore be bounded away from
zero. The parameter representing minimum layer thick-
ness, together with K and the time step used in solv-
ing (19), can be tuned to concentrate the effect of verti-
cal diffusion almost entirely on very thin layers. We use
the scheme in this mode as an alternative to the grid
generator to avoid generating zero-thickness layers in
the isentropic subdomain that may result from strongly
layer-dependent diabatic forcing. The advantage of the
present scheme over the grid generator is that it does
not produce local deviations from target θ. Suitable pa-
rameter values are: 1 m2 for the product of time step and
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mixing coefficient, and 2 × 10−3m for the minimum thick-
ness.

Ideally, vertical mixing should conserve the total heat
content of the column,

∫

cvTdp. From (15) we note that
in order to conserve total heat, the variable z in (17) –
(21) must be replaced by a variable proportional to p1+k.
No other changes are required in the solution procedure,
except that the mixing coefficient K in (20) must be ren-
dered dimensionally compatible with the new vertical co-
ordinate.

In a similar vein, preservation of the total height
∫

θdΠ

of the column during mixing can be achieved by using a
variable proportional to pk in place of z. Note that height
preservation is incompatible with heat conservation.
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